Derivative of the determinant
There's two notions of the derivative we may need.
Theorem : Given the directional derivative of a matrix
\begin{eqnarray} \frac{\delta_B F[A]}{\delta A} &=& \lim_{\varepsilon \to 0} \frac{F[A + \varepsilon B] - F[A]}{\varepsilon} \end{eqnarray}The directional derivative of the determinant is
\begin{eqnarray} \frac{\delta_B \det(A)}{\delta A} &=& \det(A) \mathrm{Tr}(A^{-1} B) \end{eqnarray}Theorem : Given a function
\begin{eqnarray} A : I \subset \mathbb{R} &\to& M_{n \times n}\\ t &\mapsto& A(t) \end{eqnarray}